
DIGITAL NOTES

OF

SOFTWARE ENGINEERING

(R240505)

B.TECH II Year -I SEM

(2025-26)

PREPARED BY

M. Sai Krishna Murthy

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Sponsored by CMR Educational Society

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

 To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into competent

and confident engineers.

 Evolving the center of excellence through creative and innovative teaching learning

practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

 Quality Policy

To pursue continual improvement of teaching learning process of Undergraduate and

Post Graduate programs in Engineering & Management vigorously.

To provide state of art infrastructure and expertise to impart the quality education.

MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech.CSE- I Sem L/T/P/C

3/-/-/3

(R240505) SOFTWARE ENGINEERING

COURSE OBJECTIVES:

• The aim of the course is to provide an understanding of the working

knowledge of the techniques to understand Software development as a

process.

• Various software process models and system models.
• Various software designs, Architectural, object oriented, user interface etc.

• Software testing methodologies overview: various testing techniques

including white box testing black box testing regression testing etc.

• Software quality: metrics, risk management quality assurance etc.

UNIT-I
Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.

A Generic view of process: Software engineering-a layered technology, a process framework, the capability

maturity model integration(CMMI).

Process models: The waterfall model, Spiral model and Agile methodology

UNIT -II

Software Requirements: Functional and non- functional requirements, user requirements, system requirements,

interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis,

requirements validation, requirements management.

UNIT-III
Design Engineering: Design process and design quality, design concepts, the design model. Creating an

architectural design: software architecture, data design, architectural styles and patterns, architectural design,

conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams,

usecase diagrams, component diagrams.

UNIT-IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and

white-box testing, validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT-V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk

refinement, RMMM.

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews,

statistical software quality assurance, software reliability, the ISO 9000qualitystandards.

.

TEXTBOOKS:

1. Software Engineering A practitioner’s Approach, RogerS Pressman,6thedition.

McGraw Hill International Edition.

2. Software Engineering, IanSommerville,7th edition, Pearson education.

COURSE OUTCOMES:

 Understand software development life cycle Ability to translate end-user requirements into system and

software requirements.

 Structure the requirements in a Software Requirements Document and Analyze Apply various process

models for a project, Prepare SRS document for a project

 Identify and apply appropriate software architectures and patterns to carry out high level design of a

system and be able to critically compare alternative choices.

 Understand requirement and Design engineering process for a project and Identify different principles to

create an user interface

 Identify different testing methods and metrics in a software engineering project and Will have

experience and/or awareness of testing problems and will be able to develop a simple testing report

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CSE

INDEX

S. No

Unit
Topic Pageno

1

I
Introduction to Software Engineering 1

2

I

Evolving Role of Software ,changing

nature of software

2

3

I
Software myths 3

4

I

A Generic view of process : Software

engineering-a layered technology ,a

process framework

4

5

I
The capability maturity model

Integration(CMMI).

5

6

I
Process models

7

7 II
Software Requirements

13

8

II

Functional and non- functional requirements, user

requirements, system requirements, interface

specification

14

9 II

The software requirements document
15

10

II

Requirements engineering process

17

11 II
Feasibility studies, requirements elicitation and analysis

18

12 II
Requirements validation, requirements
management

21

13

III
Design Engineering

24

14 III Design concepts

25

15 III The design model

27

16

III
Creating an architectural design: software

architecture, data design

28

17

III
A Conceptual Model of the UML

31

18

III

Basic structural modeling, class diagrams, sequence

diagrams, collaboration diagrams, use case diagrams,
component diagrams

53

19

IV
Testing Strategies : A strategic approach to software

testing ,test strategies for conventional software

54

20

IV

Black-Box and White-Box testing

58

21

IV
Validation testing, System testing

61

22

IV
The art of Debugging

62

23

IV

Product metrics: Software Quality, Metrics for Analysis
Model, Metrics for Design Model, Metrics for source

code, Metrics for testing, Metrics for maintenance.

64

24

V
Risk management: Reactive Vs proactive risk strategies,

software risks,

67

25

V
Identification, Risk projection,

68

26

V
Risk refinement, RMMM

69

27

V
Quality Management: Quality concepts, software
quality assurance

65

28

V
Software reviews, formal technical reviews

71

29

V

Statistical software quality assurance,.

72

30

V

Software reliability, the ISO

9000qualitystandards

73

UNIT- I

Introduction to Software Engineering: The evolving role of software, changing nature

of software, software myths.

A Generic view of process: Software engineering-a layered technology, a process

framework, the capability maturity model integration (CMMI).

Process models: The waterfall model, Spiral model and Agile methodology

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering

approach to software development. Software programs can be developed without S/E

principles and methodologies but they are indispensable if we want to achieve good

quality software in a cost effective manner.

Software is defined as:

Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design, building,

and use of engines, machines, and structures. It is the application of science, tools and

methods to find cost effective solution to simple and complex problems.

SOFTWARE ENGINEERING is defined as a systematic, disciplined and quantifiable

approach for the development, operation and maintenance of software.

Dept. of CSE 1| P a g e

SOFTWARE ENGINEERING

Dept. of CSE 2| P a g e

The Evolving role of software

The dual role of Software is as follows:

1. A Product-Information transformer producing, managing and displaying information.

2. A Vehicle for delivering a product-Control of computer(operating system),the

communication of information(networks) and the creation of other programs.

Characteristics of software

• Software is developed or engineered, but it is not manufactured in the classical sense.

• Software does not wear out, but it deteriorates due to change.

• Software is custom built rather than assembling existing components.

THECHANGINGNATUREOFSOFTWARE

• The various categories of software are

• System software

• Application software

• Engineering and scientific software

• Embedded software
• Product-line software

• Web-applications

• Artificial intelligence software

• System software. System software is a collection of programs written to service other

programs

• Embedded software—resides in read-only memory and is used to control products and

systems for the consumer and industrial markets.

• Artificial intelligence software. Artificial intelligence (AI) software makes use of non

numeric algorithms to solve complex problems that are not amenable to computation or

straightforward analysis

• Engineeringandscientificsoftware.Engineeringandscientificsoftwarehavebeencharact
erized

SOFTWARE ENGINEERING

Dept. of CSE 3| P a g e

by "number crunching" algorithms.

LEGACYSOFTWARE

Legacy software is older programs that are developed decades ago. The quality of legacy

software is poor because it has in extensible design, convoluted code, poor and nonexistent

documentation, test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

 Thesoftwaremustbeadaptedtomeettheneedsofnewcomputingenvironmentortechnolog y.

 The software must be enhanced to implement new business requirements.

 Thesoftwaremustbeextendedtomakeitinteroperablewithmoremodernsystemsordataba se

 The software must be re architected to make it viable within a network environment.

SOFTWAREMYTHS

Myths are widely held but false beliefs and views which propagate misinformation and

confusion. Three types of myth are associated with software:

- Management myth

- Customer myth

- Practitioner’s myth

MANAGEMENTMYTHS

• Myth (1)-The available standards and procedures for software are enough.

• Myth (2)-Each organization feel that they have state-of-art software

development tools since they have latest computer.

• Myth (3)-Adding more programmers when the work is behind schedule can catch up.

• Myth(4)-Outsourcing the software project to third party , we can relax and let that party
build it.

CUSTOMERMYTHS

• Myth (1)-General statement of objective is enough to begin writing programs, the

details can be filled in later.

• Myth(2)-Software is easy to change because software is flexible

PRACTITIONER’SMYTH

• Myth (1)-Once the program is written ,the job has been done.

• Myth (2)-Until the program is running , there is no way of assessing the quality.

• Myth(3)-The only deliverable work product is the working program

• Myth (4)-Software Engineering creates voluminous and unnecessary

documentation and invariably slows down software development.

SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY

SOFTWARE ENGINEERING

Dept. of CSE 4| P a g e

Fig: Software Engineering-A layered technology

SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY

• Quality focus –Bedrock that supports Software Engineering.

• Process-Foundation for software Engineering

• Methods-Provide technical How-to’s for building software

• Tools-Provide semi-automatic and automatic support to methods

APROCESSFRAMEWORK

• Establishes the foundation for a complete software process

• Identifies a number of frame work activities applicable to all software projects

• Also include a

setofumbrellaactivitiesthatareapplicableacrosstheentiresoftwareprocess.

A PROCESS FRAME WORK comprises of: Common process frame work Umbrella activities

Framework activities Tasks, Milestones, deliverables SQA points

SOFTWARE ENGINEERING

Dept. of CSE 5| P a g e

A PROCESS FRAME WORK

Used as a basis for the description of process models Generic process activities

• Communication

• Planning

• Modeling

• Construction

• Deployment

APROCESSFRAMEWORK

Genericviewofengineeringcomplimentedbyanumberofumbrellaactivities

 Software project tracking and control

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Document preparation and production

 Reusability management

 Measurement

 Risk management

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

• Developed by SEI (Software Engineering institute)
• Assess the process model followed by an organization and rate the organization with different

levels

• A set of software engineering capabilities should be present as organizations reach

SOFTWARE ENGINEERING

Dept. of CSE 6| P a g e

different levels of process capability and maturity.

CMMI process Meta model can be represented in different ways

1. A continuous model

2. A staged model

Continuous model:

-Lets organizations elect specific improvement that best meet its business objectives and

minimize risk- Levels are called capability levels.

-Describes a processin2 dimensions

-Each process area is assessed against specific goals and practices and israted according to the

following capability levels.

CMMI

• Six levels of CMMI

– Level0:Incomplete

– Level1:Performed

– Level2:Managed

– Level3:Defined

– Level4:Quantitativelymanaged

– Level5:Optimized

CMMI

• Incomplete-Process is adhoc. Objective and goal of process areas are not known

• Performed-Goal, objective, work tasks, work products and other activities of

software process are carried out

• Managed-Activities are monitored, reviewed, evaluated and controlled
• Defined-Activities are standardized, integrated and documented

SOFTWARE ENGINEERING

Dept. of CSE 7| P a g e

• Quantitatively Managed-Metrics and indicators are available to measure the process and

quality

• Optimized-Continuous process improvement based on quantitative feedback from the user

-Use of innovative ideas and techniques, statistical quality control and other methods for process
improvement.

CMMI-Staged model

- This model is used if you have no clue of how to improve the process for quality
software.

- It gives a suggestion of what things other organizations have found helpful to work first

- Levels are called maturity levels

PROCESS MODELS

• Help in the software development

• Guide the software team through a set of frame work activities

• Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

• Used when requirements are well understood in the beginning

• Also called classic life cycle

• A systematic, sequential approach to Software development

• Begins with customer specification of Requirements and progresses through

planning, modeling, construction and deployment.

This Model suggests a systematic, sequential approach to SW development that begins at

the system level and progresses through analysis, design, code and testing

PROBLEMS IN WATER FALL MODEL

• Real projects rarely follow these sequential flow since they are always iterative

• The model requires requirements to be explicitly spelled out in the
beginning, which is often difficult

Modeling

Deployment

Construction

Planning

Communication

SOFTWARE ENGINEERING

Dept. of CSE 8| P a g e

• A working model is not available until late in the project time plan.

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical lifecycle and

The iterative nature of prototype model. Include new element: Risk element. Starts in middle and

continually visits the basic tasks of communication, planning, modeling, construction and

deployment

THE SPIRAL MODEL

• Realistic approach to the development of large scale system and software

• Software evolves as process progresses

• Better understanding between developer and customer

• The first circuit might result in the development of a product specification

• Sub sequent circuits develop a prototype

• And sophisticated version of software

SOFTWARE ENGINEERING

Dept. of CSE 9| P a g e

THE CONCURRENT DEVELOPMENT MODEL

• Also called concurrent engineering

• Constitutes a series of framework activities ,software engineering action ,tasks and

their associated states
• All activities exist concurrently but reside in different states
• Applicable to all types of software development

• Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

• Difficult in project planning

• Speed of evolution is not known does not focus on flexibility and extensibility (more

emphasis on high quality)

• Requirement is balance between high quality and flexibility and extensibility

Agility and Agile Process model

The meaning of Agile is swift or versatile."Agile process model" refers to a software

development approach based on iterative development. Agile methods break tasks into

smaller iterations, or parts do not directly involve long term planning. The project scope and

requirements are laid down at the beginning of the development process. Plans regarding the

number of iterations, the duration and the scope of each iteration are clearly defined in advance

Phases of Agile model:

1. Requirements gathering

2. Design the requirements

SOFTWARE ENGINEERING

Dept. of CSE 10| P a g e

3. Construction/iteration

4. Testing/Quality assurance

5. Deployment

6. Feedback

1. Requirements gathering: In this phase, you must define the requirements. You should

explain business opportunities and plan the time and effort needed to build the project.

Based on this information, you can evaluate technical and economic feasibility.

2. Design the requirements: When you have identified the project, work with stakeholders to

define requirements. You can use the user flow diagram or the high- level UML diagram to

show the work of new features and show how it will apply to your existing system.

3. Construction/ iteration: When the team defines the requirements, the work begins.

Designers and developers start working on their project, which aims to deploy a working

product. The product will undergo various stages of improvement, so it includes simple,

minimal functionality.

4. Testing: In this phase, the Quality Assurance team examines the product's

performance and looks for the bug.

5. Deployment: In this phase, the team issues a product for the user's work

environment.

6. Feedback: After releasing the product, the last step is feedback. In this, the team receives

feedback about the product and works through the feedback. Advantages:

1. Frequent Delivery

2. Face-to-Face Communication with clients.

3. Efficient design and fulfils the business requirement.

4. Any time changes are acceptable.

5. It reduces total development time.

Disadvantages:

1. Due to the shortage of formal documents, it creates confusion and crucial decisions taken

throughout various phases can be misinterpreted at any time by different team members.

2. Due to the lack of proper documentation, once the project completes and the developers

allotted to another project, maintenance of the finished project can

SOFTWARE ENGINEERING

Dept. of CSE 11| P a g e

become a difficulty.

Other process models of Agile Development and Tools

 Crystal

 Scrum

Scrum

Scrum is aimed at sustaining strong collaboration between people working on complex

products, and details are being changed or added. It is based upon the systematic interactions

between the three major roles: Scrum Master, Product Owner, and the Team.

 Scrum Master is a central figure within a project. His principal responsibility is to

eliminate all the obstacles that might prevent the team from working efficiently.

 Product Owner, usually a customer or other stakeholder, is actively involved

throughout the project ,conveying the global vision of the product and providing timely

feedback on the job done after every sprint.

 Scrum Team is a cross-functional and self-organizing group of people that is responsible

for the product implementation. It should consist of up to 7 team members, in order to stay

flexible and productive.

Crystal

Crystal is an agile methodology for software development. It places focus on people over

processes, to empower teams to find their own solutions for each project rather than being

constricted with rigid methodologies.

SOFTWARE ENGINEERING

Dept. of CSE 12| P a g e

Crystal methods focus on:-

 People involved

 Interaction between the teams/Community

 Skills of people involved Their Talents

SOFTWARE ENGINEERING

Dept. of CSE 13| P a g e

UNIT-II

SOFTWAREREQUIREMENTS: Functional and non- functional requirements, user

requirements, system requirements, interface specification, the software requirements

document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis,

requirements validation, requirements management.

Software Requirements:

IEEE defines Requirements:

1. A condition or capability needed by a user to solve a problem or achieve an

objective

2. A condition or capability that must be met or possessed by a

system or a system component to satisfy construct, standard,

specification or formally imposed document

3. A documented representation of a condition nor capability as in 1 or 2

SOFTWARE REQUIREMENTS

• Encompasses both the User’s view of the requirements(the

external view)and the Developer’s view(inside characteristics)

User’s Requirements

--Statements in a natural language plus diagram, describing the services the

system is expected to provide and the constraints

• System Requirements—Describe the system’s function ,services and

operational condition

SOFTWARE REQUIREMENTS

• System Functional Requirements

--Statement of services the system should provide

--Describe the behavior in particular situations

--Defines the system reaction to particular inputs

• Non functional Requirements

- Constraints on the services or functions offered by the system

--Include timing constraints ,constraints on the development process and standards

--Apply to system as a whole

• Domain Requirements

--Requirements relate to specific application of the system

--Reflect characteristics and constraints of that system

SOFTWARE ENGINEERING

Dept. of CSE 14| P a g e

FUNCTIONALREQUIREMENTS

• Should be both complete and consistent

• Completeness

--All services required by the user should be defined

• Consistent

--Requirements should not have contradictory definition

• Difficult to achieve completeness and consistency for large system

NON-FUNCTIONAL REQUIREMENTS

Types of Non-functional Requirements

1. Product Requirements

-Specify product behavior

-Include the following

• Usability

• Efficiency

• Reliability

• Portability

2. Organizational Requirements

--Derived from policies and procedures

--Include the following:

• Delivery

• Implementation

• Standard

3. External Requirements

--Derived from factors external to the system and its development process

--Includes the following

• Interoperability

• Ethical

• Legislative

PROBLEMSFACEDUSINGTHENATURALLANGUAGE

1. Lack of clarity—Leads to misunderstanding because of ambiguity of

natural language

2. Confusion—Due to over flexibility, some time difficult to find

whether requirements are same or distinct.

3. Amalgamation problem—Difficult to modularize natural language
requirements

STRUCTURED LANGUAGE SPECIFICATION

• Requirements are written in a standard way

• Ensures degree of uniformity

• Provide templates to specify system requirements

• Include control constructs and graphical highlighting to partition the

specification

SOFTWARE ENGINEERING

Dept. of CSE 15| P a g e

SYSTEM REQUIREMENTS STANDARD FORM

• Function

• Description

• Inputs

• Source

• Outputs

• Destination

• Action

• Precondition

• Post condition

• Side effects

Interface Specification

• Working of new system must match with the existing system

• Interface provides this capability and precisely specified

Three types of interfaces

1. Procedural interface—Used for calling the existing programs by the new
programs

2. Data structures-Provide data passing from one sub-system to another

3. Representations of Data

--Ordering of bits to match with the existing system

--Most common in real-time and embedded system

The Software Requirements document

The requirements document is the official statement of what is required of the

system developers. Should include both a definition of user requirements and a

specification of the system requirements. It is NOT a design document. As far

as possible ,it should set of” WHAT” the system should do rather than HOW it

should do it

The Software Requirements document

Heninger suggests that here are 6requirements that requirement document should

satisfy. It should

• Specify only external system behavior

• Specify constraints on the implementation.

• Be easy to change

• Serve as reference tool for system maintainers

• Record for thought about the lifecycle of the system.

• Characterize acceptable responses to undesired events

Purpose of SRS

SOFTWARE ENGINEERING

Dept. of CSE 16| P a g e

• Communication between the Customer, Analyst, system developers,

SOFTWARE ENGINEERING

Dept. of CSE 17| P a g e

maintainers

• Firm foundation for the design phase

• Support system testing activities

• Support project management and control

• Controlling the evolution of the system

IEEE requirements standard

Defines a generic structure for a requirements document that must be

instantiated for each specific system.

– Introduction.

– General description.

– Specific requirements.

– Appendices.

– Index.

IEEE requirements standard

1. Introduction :

2. Purpose

3. Scope

4. Definitions,

5. Acronyms and Abbreviations

6. References

7. Overview

8. General Description

9. Product perspective

10. Product function summary

11. User characteristics

12. General constraints
13. Assumptions and dependencies

14. Specific Requirements

15. Functional requirements

-External interface requirements

- Performance requirements

- Design constraints

- Attributeseg.security,availability,maintainability,transferability/conversion

- Other requirements

• Appendices
• Index

REQUIREMENTS ENGINEERING PROCESS

To create and maintain a system requirement document .The overall process

includes four high level requirements engineering sub-processes: Feasibility

study:--Concerned with assessing whether the system is useful to the business

2. Elicitation and analysis:-- Discovering requirements

SOFTWARE ENGINEERING

Dept. of CSE 18| P a g e

3. Specifications:-- Converting the requirements into a standard form

4. Validation:-- Checking that the requirements actually define the system that

the customer wants

SPIRAL REPRESENTATION OF REQUIREMENTS ENGINEERING
PROCESS

Process represented as three stage activity. Activities are organized as an

iterative process around a spiral. Early in the process, most effort will be spent

on understanding high-level business and the use requirement. Later in the outer

rings, more effort will be devoted to system requirements engineering and

system modeling

Three level process consists of :

 Requirements elicitation

 Requirements specification

 Requirements validation

SOFTWARE ENGINEERING

Dept. of CSE 19| P a g e

FEASIBILITYSTUDIES

Starting point of the requirements engineering process

• Input :Set of preliminary business requirements, an outline description of

the system and how the system is intended to support business processes

• Output : Feasibility report that recommends whether or not it is worth

carrying out further Feasibility report answers a number of questions:

1. Does the system contribute to the overall objective

2. Can the system be implemented using the current technology and with in

given cost and schedule
3. Can the system be integrated with other system which is already in place.

REQUIREMENTS ELICITATION ANALYSIS

Involves a number of people in an organization.

Stakeholder definition—Refers to any person or group who will be affected by the

system directly or indirectly i.e. End users, Engineers, business managers, domain

experts.

 Reasons why eliciting is difficult

 Stakeholder often don’t know what they want from the computer

system

 A stakeholder expression of requirements in natural language is

sometimes difficult to understand.

 Different stakeholders express requirements differently

 Influences of political factors, Change in requirements due to

dynamic environments.

REQUIREMENTS ELICITATION PROCESS

Process activities

1. Requirement Discovery—Interaction with stakeholder to collect

their requirements including domain and documentation

2. Requirements classification and organization—Coherent clustering

of requirements from unstructured collection of requirements

3. Requirements prioritization and negotiation—Assigning priority to

requirements

--Resolves conflicting requirements through negotiation

4. Requirements documentation—Requirements be documented and

placed in the next round of spiral

SOFTWARE ENGINEERING

Dept. of CSE 20| P a g e

The spiral representation of Requirements Engineering

REQUIEMENTSDICOVERYTECHNIQUES

1. Viewpoints –Based on the viewpoints expressed by the stakeholder

--Recognizes multiple perspectives and provides a framework for discovering conflicts

in the requirements proposed by different stakeholders

Three Generic types of viewpoints

 Inter actor viewpoint—Represents people or other system that interact directly with the
system

 Indirect viewpoint—Stakeholders who influence the requirements ,but don’t use the

system

 Domain viewpoint—Requirements domain characteristics and constraints that

influence the requirements.

 Inter viewing--Puts questions to stakeholders about the system that they use and the system
to be developed.

SOFTWARE ENGINEERING

Dept. of CSE 21| P a g e

Requirements are derived from the answers.

Two types of interview

– Closed interviews where the stakeholder’s answers pre-defined set of questions.

– Open interviews discuss a range of issues with the stakeholders for better
understanding their needs.

Effective interviewers

a) Open-minded : no pre-conceived ideas

b) Prompter: prompt the interview to start discussion with a question or a proposal

2. Scenarios --Easier to relate to real life examples than to abstract description. Starts with an

outline of the interaction and during elicitation ,details are added to create a complete description

of that interaction

Scenario includes:

1. Description at the start of the scenario

2. Description of normal flow of the event

3. Description of what can go wrong and how this is handled

4. Information about other activities parallel to the scenario

5. Description of the system state when the scenario finishes

LIBSYS scenario

• Initial assumption: The user has logged onto the LIBSYS system and has located the

journal containing the copy of the article.

• Normal: The user selects the article to be copied. He or she is then prompted by the system

to either provide subscriber information for the journal or to indicate how they will pay for the

article. Alternative payment methods are by credit card or by quoting an organizational account

number.

• The user is then asked to fill in a copyright form that maintains details of the transaction

and they then submit this to the LIBSYS system.

• The copyright form is checked and, if OK, the PDF version of the article is downloaded to

the LIBSYS working area on the user’s computer and the user is informed that it is available.

The user is asked to select a printer and a copy of the article is printed

LIBSYS scenario

• What can go wrong: The user may fail to fill in the copyright form correctly. In this case,

the form should be re-presented to the user for correction. If there submitted form is still in

correct then the user’s request for the article is rejected.

• The payment may be rejected by the system. The user’s request for the article is rejected.

• The article download may fail. Retry until successful or the user terminates the

session.

• Other activities: Simultaneous downloads of other articles.

• System state on completion: User is logged on. The downloaded article has been

deleted from LIBSYS workspace if it has been flagged as print-only.

SOFTWARE ENGINEERING

Dept. of CSE 22| P a g e

Use cases—scenario based technique for requirement elicitation. A fundamental feature of

UML, notation for describing object-oriented system models. Identifies a type of

interaction and the actors involved. Sequence diagrams are used to add information to a

Use case

Article printing use-case

Article printing LIBSYS use cases Article

printing Article search

User administration Supplier Catalogue services Library User

Library Staff

REQUIREMENTSVALIDATION

Concerned with showing that the requirements define the system that the customer wants.

Important because errors in requirements can lead to extensive rework cost Validation

checks

 Validity checks –Verification that the system performs the intended function by the

user

 Consistency check --Requirements should not conflict
 Completeness checks—Includes requirements which define all functions and

constraints intended by the system user

Realism checks –Ensures that the requirements can be actually implemented

Verifiability –Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES

 REQUIREMENTS REVIEWS : Reviewers check the following:

o Verifiability: Testable

o Comprehensibility

o Traceability

o Adaptability

 PROTO TYPING

 TEST-CASE GENERATION

Requirements management

Requirements are likely to change for large software systems and as such requirements

management process is required to handle changes.

Reasons for requirements changes

(a) Diverse Users community where users have different requirements and priorities
(b) System customers and end users are different

(c) Change in the business and technical environment after installation two classes of

requirements

SOFTWARE ENGINEERING

Dept. of CSE 23| P a g e

(d) Enduring requirements : Relatively stable requirements

(e) Volatile requirements : Likely to change during system development process or during

operation

Requirements management planning

An essential first stage in requirement management process. Planning process consists of the

following

i. Requirements identification—Each requirement must have unique tag for cross

reference and traceability

ii. Change management process—Set of activities that assess the impact and cost of
changes

iii. Traceability policy--A matrix showing links between requirements and other

elements of software development

iv. CASE tool support—Automatic tool to improve efficiency of change management

process. Automated tools are required for requirements storage, change management

and traceability management

Traceability

Maintains three types of trace ability information.

1. Source traceability—Links the requirements to the stakeholders

2. Requirements traceability—Links dependent requirements within the requirements

document

3. Design traceability—Links from the requirements to the design module

SOFTWARE ENGINEERING

Dept. of CSE 24| P a g e

A traceability matrix Requirements change management consists of three principal

stages:

1. Problem analysis and change specification--Process starts with a

specific change proposal and analyzed to verify that it is valid

2. Change analysis and costing—Impact analysis in terms of cost, time and risks

3. Change implementation—Carrying out the changes in requirements

document, system design and its implementation

SOFTWARE ENGINEERING

Dept. of CSE 25| P a g e

UNIT III

Design Engineering: Design process and design quality, design concepts, the design model.

Creating an architectural design: software architecture, data design, architectural styles and

patterns, architectural design, conceptual model of UML, basic structural modeling, class

diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams

DESIGN PROCESS AND DESIGNQUALITY

Encompasses the set of principles, concepts and practices that lead to the development of high

quality system or product. Design creates a representation or model of the software. Design

model provides details about S/W architecture, interfaces and components that are necessary to

implement the system. Quality is established during Design. Design should exhibit firmness,

commodity and design. Design sits at the kernel of S/W Engineering. Design sets the stage for

construction.

QUALITYGUIDELINES

• Uses recognizable architectural styles or patterns

• Modular that is logically partitioned into elements or subsystems

• Distinct representation of data, architecture, interfaces and components

• Appropriate data structures for the classes to be implemented

• Independent functional characteristics for components

• Interfaces that reduces complexity of connection

• Repeatable method

QUALITY ATTRIBUTES

FURPS quality attributes

• Functionality

* Features and capabilities of programs

* Security of the overall system

• Usability

* user-friendliness

* Aesthetics

* Consistency

* Documentation

• Reliability

* Evaluated by measuring the frequency and severity of failure

* MTTF

• Supportability

* Extensibility

* Adaptability

* Serviceability

DESIGN CONCEPTS

1. Abstractions

SOFTWARE ENGINEERING

Dept. of CSE 26| P a g e

2. Architecture

3. Patterns

4. Modularity

5. Information Hiding

6. Functional Independence

7. Refinement

8. Re-factoring

9. Design Classes

DESIGN CONCEPTS

ABSTRACTION

Many levels of abstraction.

Highest level of abstraction: Solution is slated in broad terms using the

language of the problem environment

Lower levels of abstraction: More detailed description of the solution is

provided

• Procedural abstraction—Refers to a sequence of instructions that a

specific and limited function

• Data abstraction—Named collection of data that describe a data object

DESIGN CONCEPTS

ARCHITECTURE—Structure organization of program components

(modules) and their interconnection Architecture Models

(a) Structural Models—An organized collection of program components
(b) Framework Models—Represents the design in more abstract way

(c) Dynamic Models—Represents the behavioral aspects indicating

changes as a function of external events

(d).Process Models—focus on the design of the business or technical process

PATTERNS

Provides a description to enables a designer to determine the followings:

(a). Whether the pattern is applicable to the current work

(b). Whether the pattern can be reused

(c). Whether the pattern can serve as a guide for developing a similar but

functionally or structurally different pattern

MODULARITY

Divides software into separately named and addressable components,

sometimes called modules. Modules are integrated to satisfy problem

requirements. Consider two problems p1 andp2. If the complexity of p1

iscp1 and of p2 is cp2 then effort to solve p1=cp1 and

 effort

t

SOFTWARE ENGINEERING

Dept. of CSE 27| P a g e

o solve p2=cp2 If cp1>cp2 then ep1>ep2

The complexity of two problems when they are combined is often greater than the

sum of the perceived complexity when each is taken separately. Based on Divide

and Conquer strategy:

it is easier to solve a complex problem when broken into sub-modules

INFORMATION HIDING

Information contained within a module is inaccessible to other modules who do

not need such information. Achieved by defining a set of Independent modules

that communicate with one another only that information necessary to achieve

S/W function. Provides the greatest benefits when modifications are required

during testing and later. Errors introduced during modification are less likely to

propagate to other location within the S/W.

FUNCTIONALINDEPENDENCE

A direct outgrowth of Modularity. Abstraction and information hiding. Achieved

by developing a module with single minded function and an aversion to excessive

interaction with other modules. Easier to develop and have simple interface.

Easier to maintain because secondary effects caused by design or code

modification are limited, error propagation is reduced and reusable modules are

possible. Independence is assessed by two quantitative criteria:

(1) Cohesion

(2) Coupling

Cohesion-- Performs a single task requiring little interaction with other

components Coupling--Measure of interconnection among modules.

Coupling should be low and cohesion should be high for good design.

REFINEMENT & REFACTORING

REFINEMENT -- Process of elaboration from high level abstraction to the lowest

level abstraction. High level abstraction begins with a statement of functions.

Refinement causes the designer to elaborate providing more and more details at

successive level of abstractions Abstraction and refinement are complementary

concepts.

REFACTORING -- Organization technique that simplifies the design of a

component without changing its function or behavior. Examines for redundancy,

unused design elements and inefficient or unnecessary algorithms.

DESIGN CLASSES-- Class represents a different layer of design

architecture.

SOFTWARE ENGINEERING

Dept. of CSE 28| P a g e

Five types of Design Classes

1. User interface class—Defines all abstractions that are necessary for
human computer interaction

2. Business domain class --

Refinementoftheanalysisclassesthatidentityattributesandservicesto

implement some of business domain

3. Process class –implement slower level business abstractions required to fully

manage the business domain classes

4. Persistent class --

Representdatastoresthatwillpersistbeyondtheexecutionofthesoftware

5. System class --Implements management and control functions to operate

and communicate within the computer environment and with the outside world.

THE DESIGN MODEL

Analysis viewed in two different dimensions as process dimension and abstract

dimension. Process dimension indicates the evolution of the design model as design

tasks are executed as part of software process.

Abstraction dimension represents the level of details as each element of the analysis

model is transformed into design equivalent

Data Design elements
--Data design creates a model of data that is represented at a high level of abstraction

--Refined progressively to more implementation-specific representation for processing

by the computer base system

--Translation of data model into a data base is pivotal to achieving business objective of
a system

THE DESIGN MODEL

Architectural design elements .Derived from three sources

 Information about the application domain of the software

 Analysis model such as data flow diagrams or analysis classes.

 Architectural pattern and styles Interface Design elements Set of
detailed drawings constituting:

 User interface

 External interfaces to other systems, devices etc

 Internal interfaces between various components

THE DESIGN MODEL

Deployment level design elements. Indicate show software functionality and sub

system will be allocated within the physical computing environment. UML

deployment diagram is developed and refined Component level design elements

fully describe the internal details of each software

SOFTWARE ENGINEERING

Dept. of CSE 29| P a g e

component. UML diagram can be used

CREATING ANARCHITECTURAL DESIGN

What is SOFTWARE ARCHITECTURE… The software architecture of a

program or computing system is the structure or structures of the system, which

comprise software components, the externally visible properties of those

components and the relationship among them.

Software Architecture is not the operational software. It is a representation

that enables a software engineer to

• Analyze the effectiveness of the design in meeting its stated

requirements.

• Consider architectural alternative at a stage when making design

changes is still relatively easy.

• Reduces the risk associated with the construction of the software.

Why Is Architecture Important? Three key reasons

--Representations of software architecture enable communication and

understanding between stakeholders
--Highlights early design decisions to create an operational entity.
--constitutes a model of software components and their interconnection

Data Design

The data design action translates data objects defined as part of the analysis model

into data structures at the component level and database architecture at application

level when necessary.

DATA DESIGN ATARCHITECTURE LEVEL

• Data structure at programming level

• Database at application level

• Data warehouse at business level.

DATA DESIGN AT COMPONENT LEVEL

Principles for data specification:

 Proper selection of data objects and data and data models

 Identification of attribute and functions and their encapsulation of these

with in a class

 Mechanism for representation of the content of each data object. Class

diagrams may be used

 Refinement of data design elements from requirement analysis to

component level design.
 Information hiding
 A library of useful data structures and operations be developed.

SOFTWARE ENGINEERING

Dept. of CSE 30| P a g e

 Software design and PL should support the specification and

SOFTWARE ENGINEERING

Dept. of CSE 31| P a g e

realization of abstract data types.

ARCHITECTURAL STYLES

Describes a system category that encompasses:

(1) a set of components
(2) a set of connectors that enables “communication and coordination

(3) Constraints that define how components can be integrated to form the system

(4) Semantic models to understand the overall properties of a system

Data-flow architectures

Shows the flow of input data ,its computational components and output data.

Structure is also called pipe and Filter. Pipe provides path for flow of data. Filters

manipulate data and work independent of its neighboring filter. If data flow

degenerates into a single line of transform, it is termed as batch sequential.

Call and return architectures
Achieves a structure that is easy to modify and scale . Two sub styles
(1) Main program/sub program architecture

--Classic program structure

--Main program invokes a number of components, which in turn invoke still

SOFTWARE ENGINEERING

Dept. of CSE 32| P a g e

other components

(2) Remote procedure call architecture

--Components of main program/sub program are distributed across

computers over network

Object-oriented architectures

The components of a system encapsulate data and the operations.

Communication and coordination between components is done via

message

Layered architectures

A number of different layers are defined Inner Layer(interface with OS)
• Intermediate Layer Utility services and application function)Outer

Layer(User interface)

ARCHITECTURAL PATTERNS

A template that specifies approach for some behavioral characteristics of

the system Patterns are imposed on the architectural styles
Pattern Domains
1. Concurrency
--Handles multiple tasks that simulate parallelism.

FIG:Layered

SOFTWARE ENGINEERING

Dept. of CSE 33| P a g e

--Approaches (Patterns)

(a) Operating system process management pattern

(b) A task scheduler pattern

(c) Persistence

--Data survives past the execution of the process

--Approaches (Patterns)

(a) Data base management system pattern

(b) Application Level persistence Pattern(word processing software)

SOFTWARE ENGINEERING

Dept. of CSE 34| P a g e

1. Distribution

--Addresses the communication of system in a distributed environment

--Approaches (Patterns)

(a)Broker Pattern

--Acts as middleman between client and server.

Conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams,

collaboration diagrams, use case diagrams, component diagrams

A Conceptual Model of the UML

To understand the UML, you need to form a conceptual model of the language, and

this requires learning three major elements: the UML's basic building blocks, the

rules that dictate how those building blocks may be put together, and some common

mechanisms that apply throughout the UML.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams
Things are the abstractions that are first-class citizens in a model;
relationships tie these things together; diagrams group interesting
collections of things.

Things in the UML

There are four kinds of things in the UML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

These things are the basic object-oriented building blocks of the UML. You use them

to write well-formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static

parts of a model, representing elements that are either conceptual or physical.

In all, there are seven kinds of structural things.

SOFTWARE ENGINEERING

Dept. of CSE 35| P a g e

First, a class is a description of a set of objects that share the same attributes,

operations, relationships, and semantics. A class implements one or more

interfaces. Graphically, a class is rendered as a rectangle, usually including its

name, attributes, and operations, as

Figure Classes

Second, an interface is a collection of operations that specify a service of a class or

component. An interface therefore describes the externally visible behavior of that

element. An interface might represent the complete behavior of a class or

component or only a part of that behavior. An interface defines a set of operation

specifications (that is, their signatures) but never a set of operation implementations.
Graphically, an interface is rendered as a circle together with its name. An interface

rarely stands alone. Rather, it is typically attached to the class or component that

realizes the interface, as in

Figure Interfaces

Third, collaboration defines an interaction and is a society of roles and other

elements that work together to provide some cooperative behavior that's bigger than

the sum of all the elements. Therefore, collaborations have structural, as well as

behavioral, dimensions. A given class might participate in several collaborations.
These collaborations therefore represent the implementation of patterns that make

up a system. Graphically, a collaboration is rendered as an ellipse with dashed

lines,

SOFTWARE ENGINEERING

Dept. of CSE 36| P a g e

usually including only its name, as in Figure .

Figure Collaborations

Fourth, a use case is a description of set of sequence of actions that a system

performs that yields an observable result of value to a particular actor. A use case is

used to structure the behavioral things in a model. A use case is realized by
collaboration. Graphically, a use case is rendered as an ellipse with solidlines,

usually including only its name, as in Figure.

Figure Use Cases

Fifth, an active class is a class whose objects own one or more processes or threads
and therefore can initiate control activity. An active class is just like a class except
that its objects represent elements whose behavior is concurrent with other elements.
Graphically, an active class is rendered just like a class, but

With heavy lines, usually including its name, attributes, and operations, as in Figure.

Figure Active Classes

SOFTWARE ENGINEERING

The remaining two elements• component, and nodes• are also

different. They represent physical things, whereas the previous five

things represent conceptual or logical things.

Sixth, a component is a physical and replaceable part of a system that conforms to

and provides the realization of a set of interfaces. In a system, you'll encounter

different kinds of deployment components, such as COM+ components or Java

Beans, as well as components that are artifacts of the development process, such as

source code files. A component typically represents the physical packaging of

otherwise logical elements, such as classes, interfaces, and collaborations.
Graphically, a component is rendered as a rectangle with tabs, usually including

only its name, as in Figure.

Figure Components

Seventh, a node is a physical element that exists at run time and represents a

Computational resource, generally having at least some memory and, often,
processing capability. A set of components may reside on a node and may also

migrate from node to node. Graphically, a node is rendered as a cube, usually

including only its name, as in

Figure Nodes

Dept. of CSE 35| P a g e

SOFTWARE ENGINEERING

Dept. of CSE 36| P a g e

These seven elements• classes, interfaces, collaborations, use cases, active classes,

components, and nodes• are the basic structural things that you may include in a

UML model. There are also variations on

These seven, such as actors, signals, and utilities (kinds of classes), processes and
threads (kinds of active classes), and applications, documents, files, libraries, pages, and
tables (kinds of components).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a

model, representing behavior over time and space. In all, there are two primary kinds of

behavioral things.

First, an interaction is a behavior that comprises a set of messages exchanged among a set

of objects within a particular context to accomplish a specific purpose. The behavior of a

society of objects or of an individual operation may be specified with an interaction. An

interaction involves a number of other elements, including messages, action sequences (the

behavior invoked by a message), and links (the connection between objects). Graphically, a

message is rendered as a directed line, almost always including the name of its operation.

Second, a state machine is a behavior that specifies the sequences of states an object or an

interaction goes through during its lifetime in response to events, together with its

responses to those events. The behavior of an individual class or a collaboration of classes

may be specified with a state machine. A state machine involves a number of other

elements, including states, transitions (the flow from state to state), events (things that

trigger a transition), and activities (the response to a transition). Graphically, a state is

rendered as a rounded rectangle, usually including its name and its sub states, if any.

These two elements• interactions and state machines• are the basic behavioral things that you may include

in a UML model. Semantically, these elements are usually connected to various
structural elements,primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into

which a model can be decomposed. In all, there is one primary kind of grouping thing,

namely, packages.

SOFTWARE ENGINEERING

Dept. of CSE 37| P a g e

A package is a general-purpose mechanism for organizing elements into groups. Structural
things, behavioral things, and even other grouping things may be placed in a package.
Unlike components (which exist at run time), a package is purely conceptual
(meaning that it exists only at development time).

Graphically, a package is rendered as a tabbed folder, usually including only its name and,
sometimes, its contents, as in Figure.

Figure Packages

Packages are the basic grouping things with which you may organize a UML model. There
are also variations, such as frameworks, models, and subsystems (kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments you may
apply to describe, illuminate, and remark about any element in a model. There is one primary kind of

annotational thing, called a note. A note is simply a symbol for rendering constraints and comments

attached to an element or a collection of elements. Graphically, a note is rendered as a rectangle
with a dog-eared corner, together with a textual or graphical comment, as in Figure .

Relationships in the UML

There are four kinds of relationships in the UML:

SOFTWARE ENGINEERING

Dept. of CSE 38| P a g e

1. Dependency

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML. You use them to write
well- formed models.

First, a dependency is a semantic relationship between two things in which a change to one thing (the
independent thing) may affect the semantics of the other thing (the dependent thing). Graphically, a
dependency is rendered as a dashed line, possibly directed, and occasionally including a label, as in
Figure.

Figure Dependencies

Second, an association is a structural relationship that describes a set of links, a link being a connection

among objects. Aggregation is a special kind of association, representing a structural relationship
between a whole and its parts. Graphically, an association is rendered as a solid line, possibly directed,
occasionally including a label, and often containing other adornments, such as multiplicity and role names,
as in Figure.

Figure Associations

Third, a generalization is a specialization/generalization relationship in which objects of the specialized

element (the child) are substitutable for objects of the generalized element (the parent). In this way, the
child shares the structure and the behavior of the parent. Graphically, a generalization relationship is
rendered as a solid line with a hollow arrowhead pointing to the parent, as in Figure .

Figure Generalizations

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier specifies a

contract that another classifier guarantees to carry out. You'll encounter realization relationships in two

places: between interfaces and the classes or components that realize them, and between use cases and

the collaborations that realize them. Graphically, a realization relationship is rendered as a cross

between a generalization and a dependency

SOFTWARE ENGINEERING

Dept. of CSE 39| P a g e

relationship, as in Figure.

Figure Realization

These four elements are the basic relational things you may include in a UML model. There are also

variations on these four, such as refinement, trace, include, and extend (for dependencies). The five

views of architecture are discussed in the following section.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a
connected graph of vertices (things) and arcs (relationships). The UML includes nine such
diagrams:

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. State chart diagram

7. Activity diagram

8. Component diagram

9. Deployment diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. These
diagrams are the most common diagram found in modeling object- oriented systems. Class diagrams
address the static design view of a system. Class diagrams that include active classes address the static
process view of a system.

An object diagram shows a set of objects and their relationships. Object diagrams represent static
snapshots of instances of the things found in class diagrams. These diagrams address the static design
view or static process view of a system as do class diagrams, but from the perspective of real or
prototypical cases.

A use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system. These diagrams are

especially important inorganizing and modeling the behaviors of a system.

SOFTWARE ENGINEERING

Dept. of CSE 40| P a g e

Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams. An shows an

interaction, consisting of a set of objects and their relationships, including the messages that may be

dispatched among them. Interaction diagrams address the dynamic view of a system. A sequence

diagram is an interaction diagram that emphasizes the time- ordering of messages;

A collaboration diagram is an interaction diagram that emphasizes the structural organization of the

objects that send and receive messages. Sequence diagrams and collaboration diagrams are isomorphic,

meaning that you can take one and transform it into the other.

A state chart diagram shows a state machine, consisting of states, transitions, events, and activities.

State chart diagrams address the dynamic view of a system. They are especially important in

modeling the behavior of an interface, class, or collaboration and emphasize the event-ordered

behavior of an object, which is especially useful in modeling reactive systems.

An activity diagram is a special kind of a state chart diagram that shows the flow from activity to
activity within a system. Activity diagrams address the dynamic view of a system. They are especially
important in modeling the function of a system and emphasize the flow of control among objects.

A component diagram shows the organizations and dependencies among a set of components.
Component diagrams address the static implementation view of a system. They are related to class
diagrams in that a component typically maps to one or more classes, interfaces, or collaborations.

A deploymheemnt. Dd ieapgl or yamme nst ho w s the configuration of run-time processing nodes and the components that live

on address the static deployment view of an architecture. They are related to component diagrams in that a

node typically encloses one or more components the configuration of run-time processing nodes and the

components that live on address the static deployment view of an architecture. They are related to component

diagrams in that a node typically encloses one or more components.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any language, the
UML has a number of rules that specify what a well-formed model should look like. A well-formed
model is one that is semantically self-consistent and in harmony with all its related models.

The UML has semantic rules for

Names What you can call things, relationships, and diagrams

Scope The context that gives specific meaning to a name

Visibility How those names can be seen and used by others

SOFTWARE ENGINEERING

Dept. of CSE 41| P a g e

Integrity How things properly and consistently relate to one
another

Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve a ndmay be
viewed by many stakeholders in different ways and at different times. For this reason, it is common for
the development team to not only build models that are well-formed, but also to build models that are
elided, incomplete, and inconsistent.

Common Mechanisms in the UML

It is made simpler by the presence of four common mechanisms that apply consistently
throughoutthe language.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility mechanisms

Specifications

The UML's specifications provide a semantic backplane that contains all the parts of all the models of
a system, each part related to one another in a consistent fashion. The UML's diagrams are thus
simply visual projections into that backplane, each diagram revealing a specific interesting aspect of
the system.

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual
representation of the most important aspects of the element. For example, the notation for a class is
intentionally designed to be easy to draw, because classes are the most common element found in
modeling object-oriented systems. The class notation also exposes the most important aspects of a

class, namely its name, attributes, and operations.

Every element in the UML's notation starts with a basic symbol, to which can be added
a variety ofadornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in at least a couple of ways.

First, there is the division of class and object. A class is an abstraction; an object is one
concrete manifestation of that abstraction. In the UML, you can model classes as well as

objects, as shownin Figure.

SOFTWARE ENGINEERING

Dept. of CSE 42| P a g e

Figure Classes And Objects

In this figure, there is one class, named Customer, together with three objects: Jan (which is marked
explicitly as being a Customer object), :Customer (an anonymous Customer object), and Elyse
(which in its specification is marked as being a kind of Customer object, although it's not shown
explicitly here).

Second, there is the separation of interface and implementation. An interface declares a contract, and
an implementation represents one concrete realization of that contract, responsible for faithfully
carrying out the interface's complete semantics. In the UML, you can model both interfaces and their

implementations, as shown in Figure.

Figure Interfaces And Implementations

In this figure, there is one component named spellingwizard.dll that implements two

interfaces, I Unknown and ISpelling.Almost every building block in the UML has this same

kind of interface/ implementation dichotomy. For example, you can have use cases and the

collaborations that realize them, as well as operations and the methods that implement them.

Extensibility Mechanisms

. The UML's extensibility mechanisms include

· Stereotypes

· Tagged values

SOFTWARE ENGINEERING

Dept. of CSE 43| P a g e

· Constraints

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building
blocks that are derived from existing ones but that are specific to your problem. For example, if
you are working in a programming language, such as Java or C++, you will often want to model
exceptions. In these languages, exceptions are just classes, although they are treated in very special
ways. Typically, you only

want to allow them to be thrown and caught, nothing else. You can make exceptions first class
citizens in your models• meaning that they are treated like basic building blocks• by marking them
with an appropriate stereotype, as for the class Overflow in
Figure .

Figure Extensibility Mechanisms

A tagged value extends the properties of a UML building block, allowing you to create new

information in that element's specification. For example, if you are working on a shrink-wrapped

product that undergoes many releases over time, you often want to track the version and author of
certain critical abstractions. Version and author are not primitive UML concepts. They can be added

to any building block, such as a class, by introducing new tagged values to that building block. In

Figure, for example, the class Event Queue is extended by marking its version and author

explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new rules or
modify existing ones. For example, you might want to constrain the Event Queue class so that all
additions are done in order. You can add a constraint that explicitly marks these for the operation
adds.

The deployment view of a system encompasses the nodes that form the system's hardware topology

on which the system executes. This view primarily addresses the distribution, delivery, and
installation of the parts that make up the physical system. With the UML, the static aspects of this
view are captured in deployment diagrams; the dynamic aspects of this view are captured in

interaction diagrams, state chart diagrams, and activity diagrams.

Each of these five views can stand alone so that different stakeholders can focus on the issues of the
system's architecture that most concern them. These five views also interact with one another•

nodes in the deployment view hold components in the implementation

SOFTWARE ENGINEERING

Dept. of CSE 44| P a g e

view that, in turn, represent the physical realization of classes, interfaces, collaborations, and active

classes from the design and process views. The UML permits you to express every one of these five

views and their interactions.

Basic structural modeling:

Class

Classes are the most important building block of any object-oriented system. A class is a description
of a set of objects that share the same attributes, operations, relationships, and semantics. A
class implements one or more interfaces.

Terms and Concepts

A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics. Graphically, a class is rendered as a rectangle.

Names

Every class must have a name that distinguishes it from other classes. A name is a textual string.

That name alone is known as a simple name; a path name is the class name prefixed by the name

of the package in which that class lives. A class may be drawn showing only its name, as Figure

shows.

Figure Simple and Path Names

Attributes

An attribute is a named property of a class that describes a range of values that instances of the
property may hold. A class may have any number of attributes or no attributes at all. An attribute
represents some property of the thing you are modeling that is shared by all objects of that class

SOFTWARE ENGINEERING

Dept. of CSE 45| P a g e

Operations

An operation is the implementation of a service that can be requested from any object of the class to
affect behavior. In other words, an operation is an abstraction of something you can do to an object
and that is shared by all objects of that class. A class may have any number of operations or no
operations at all.

For example, in a windowing library such as the one found in Java's awt package, all objects of the
class Rectangle can be moved, resized, or queried for their properties. Often (but not always),
invoking an operation on an object changes the object's data or state. Graphically, operations are
listed in a compartment just below the class attributes. Operations may be drawn showing only their
names.

You can further specify an attribute by stating its class and possibly a default initial value

You can specify an operation by stating its signature, covering the name, type, and default
value of all parameters and (in the case of functions) a return type, as shown in Figure.

Figure Operations and Their Signatures

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation at once. In fact, in

most cases, you can't (there are too many of them to put in one figure) and you probably shouldn't
(only a subset of these attributes and operations are likely to be relevant to a specific view). For these
reasons, you can elide a class, meaning that you can choose to show only some or none of a class's

attributes and operations. An empty compartment doesn't necessarily mean there are no attributes or
operations, just that you didn't choose to show them. You can explicitly specify that there are more
attributes or properties than shown by ending each list with an ellipsis ("...").

To better organize long lists of attributes and operations, you can also prefix

SOFTWARE ENGINEERING

Dept. of CSE 46| P a g e

each group witha descriptive category by using stereotypes, as shown in Figure .

Figure Stereotypes for Class Features

 Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are making a
statement that all objects of that class have the same kind of state and the same kind of behavior. At a
more abstract level, these corresponding attributes and operations are just the features by which the
class's responsibilities are carried out. A Wall class is responsible for knowing about height, width,
and thickness; a Fraud Agent class, as you might find in a credit card application, is responsible for
processing orders and determining if they are legitimate, suspect, or fraudulent; a Temperature
Sensor class is responsible for measuring temperature and raising an alarm if the temperature reaches
a certain point.

When you model classes, a good starting point is to specify the responsibilities of the things in your
vocabulary. Techniques like CRC cards and use case-based analysis are especially helpful here. A

class may have any number of responsibilities, although, in practice, every well-structured class has at
least one responsibility and at most just a handful. As you refine your models, you will translate these
responsibilities into a set of attributes and operations that best fulfill the class's responsibilities.

Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class
icon, as shown in Figure.

SOFTWARE ENGINEERING

Dept. of CSE 47| P a g e

Figure Responsibilities

Attributes, operations, and responsibilities are the most common features you'll need when you
create abstractions. In fact, for most models you build, the basic form of these three features will be
all you needto convey the most important semantics of your classes.

Operations

An operation is the implementation of a service that can be requested from any object of the class to
affect behavior. In other words, an operation is an abstraction of something you can do to an object
and that is shared by all objects of that class. A class may have any number of operations or no
operations at all.

For example, in a windowing library such as the one found in Java's awt package, all objects of
the class Rectangle can be moved, resized, or queried for their properties. Often (but not

always), invoking an operation on an object changes the object's data or state. Graphically,
operations are listed in a compartment just below the class attributes. Operations may be drawn
showing only their names, as in Figure You can specify an operation by stating its signature,

covering the name, type, and default value of all parameters and (in the case of functions) a
return type, as shown in Figure.

Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are making a statement
that all objects of that class have the same kind of state and the same kind of behavior. At a more abstract
level, these corresponding attributes and operations are just the features by which the class's responsibilities
are carried out. A Wall class is responsible for knowing about height, width, and thickness; a Fraud Agent
class, as you might find in a credit card application, is responsible for processing orders and determining if they
are legitimate, suspect, or fraudulent; a Temperature Sensor class is responsible for measuring temperature
and raising an alarm if the temperature reaches a certain point.

Other Features

SOFTWARE ENGINEERING

Dept. of CSE 48| P a g e

When you model classes, a good starting point is to specify the responsibilities of the things in your vocabulary.
Techniques like CRC cards and use case-based analysis are especially helpful here. A class may have any
number of responsibilities, although, in practice, every well-structured class has at least one responsibility and
at most just a handful. As you refine your models, you will translate these responsibilities into a set of attributes
and operations that best fulfill the class's responsibilities.

graphically, responsibilities can be drawn in a separate compartment at the bottom of the
class icon,as shown in Figure.

Figure Responsibilities

Attributes, operations, and responsibilities are the most common features you'll need when you

create abstractions. In fact, for most models you build, the basic form of these three features will be
all you needto convey the most important semantics of your classes.

When you build models, you will soon discover that almost every abstraction you create is some
kind of class. Sometimes, you will want to separate the implementation of a class from its
specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the same

kinds of classes over and over again, such as classes that represent concurrent processes and threads,
or classes that represent physical things, such as applets, Java Beans, COM+ objects, files, Web
pages, and hardware. Because these kinds of classes are so common and because they represent
important architectural abstractions, the UML provides active classes (representing processes and

threads), components (representing physical software components), and nodes (representing hardware
devices).

Other Features

SOFTWARE ENGINEERING

Dept. of CSE 49| P a g e

Relationships

Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the three most
important relationships are dependencies, generalizations, and associations. Graphically, a
relationship is rendered as a path, with different kinds of lines used to distinguish the kinds of
relationships.

Dependency

A dependency is a using relationship that states that a change in specification of one thing (for
example, class Event) may affect another thing that uses it (for example, class Window), but not
necessarily the reverse. Graphically, a dependency is rendered as a dashed directed line, directed to
the thing being depended on. Use dependencies when you want to show one thing using another.

When you build models, you will soon discover that almost every abstraction you create is some
kind of class. Sometimes, you will want to separate the implementation of a class from its
specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the same
kinds of classes over and over again, such as classes that represent concurrent processes and threads,

or classes that represent physical things, such as applets, Java Beans, COM+ objects, files, Web
pages, and hardware. Because these kinds of classes are so common and because they represent
important architectural abstractions, the UML provides active classes (representing processes and

threads), components (representing physical software components), and nodes (representing hardware
devices).

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on groups

When you build models, you will soon discover that almost every abstraction you create is some
kind of class. Sometimes, you will want to separate the implementation of a class from its
specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the same
kinds of classes over and over again, such as classes that represent concurrent processes and threads,
or classes that represent physical things, such as applets, Java Beans, COM+ objects, files, Web
pages, and hardware. Because these kinds of classes are so common and because they represent
important architectural abstractions, the UML provides active classes (representing processes and

threads), components (representing physical software components), and nodes (representing hardware
devices).

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on groups

SOFTWARE ENGINEERING

Dept. of CSE 50| P a g e

Figure Dependencies

Generalization

A generalization is a relationship between a general thing (called the superclass or parent)and a more
specific kind of that thing (called the subclass or child). Generalization is sometimes called an "is-a-
kind- of" relationship: one thing (like the class BayWindow) is-a- kind-of a more general thing (for
example, the class Window). Generalization means that objects of the child may be used anywhere
the parent may

appear, but not the reverse. In other words, generalization means that the child is substitutable for the

parent. A child inherits the properties of its parents, especially their attributes and operations.

Often• but not always• the child has attri butes and operations in addition to those found in its parents.

An operation of

a child that has the same signature as an operation in a parent overrides the operation of the parent;
this is known as polymorphism. Graphically, generalization is rendered as a solid directed line
with a large open arrowhead, pointing to the parent, as shown in Figure. Use generalizations when
you want to show parent/child relationships.

Figure Generalization

SOFTWARE ENGINEERING

Dept. of CSE 51| P a g e

A class may have zero, one, or more parents. A class that has no parents and one or more children is
called a root class or a base class. A class that has no children is called a leaf class. A class that has

exactly one parent is said to use single inheritance; a class with more than one parent is said to use
multiple inheritance.

Association

An association is a structural relationship that specifies that objects of one thing are connected to

objects of another. Given an association connecting two classes, you can navigate from an objectof

one class to anobject of the other class, and vice versa. It's quite legal to have both ends of an

association circle back to the same class. This means that, given an object of the class, you can link to

other objects of the same class. An as An association that connects exactly two classes is called a

binary association. Although it's not as common, you can have associations that connect more

than two classes; these are called n-ary associations. Graphically, an association is rendered as a

solid line connecting the same or different classes. Use associations when you want to show

structural relationships.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the
relationship. Sothat there is no ambiguity about its meaning, you can give a direction to

SOFTWARE ENGINEERING

Dept. of CSE 52| P a g e

the name by providing a direction triangle that points in the direction you intend to read the
name, as shown in Figure.

Figure Association Names

Role

When a class participates in an association, it has a specific role that it plays in that relationship; a
role is just the face the class at the near end of the association presents to the class at the other end of
the association. You can explicitly name the role a class plays in an association. In Figure, a Person
playing the role of employee is associated with a Company playing the role of employer.

Figure Roles

An association represents a structural relationship among objects. In many modeling situations, it's
important for you to state how many objects may be connected across an instance of an association.
This "how many" is called the multiplicity of an association's role, and is written as an expression
that evaluates to a range of values or an explicit value as in Figure . When you state a multiplicity at
one end of an association, you are specifying that, for each object of the class at the opposite end,
there must be that many objects at the near end. You can show a multiplicity of exactly one (1),
zero or one (0..1), many (0..*),

Multiplicity

SOFTWARE ENGINEERING

Dept. of CSE 53| P a g e

or one or more (1..*). You can even state an exact number (for example, 3).

Figure Multiplicity

Aggregation

A plain association between two classes represents a structural relationship between peers, meaning

that both classes are conceptually at the same level, no one more important than the other.

Sometimes, you will want to model a "whole/part" relationship, in which one class represents a

larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of relationship

is called aggregation, which represents a "has-a" relationship, meaning that an object of the whole has

objects of the part. Aggregation is really just a special kind of association and is specified by

adorning a plain association with an open diamond at the whole end, as shown in Figure .

Figure Aggregation

Other Features

Plain, unadorned dependencies, generalizations, and associations with names, multiplicities, and
roles are the most common features you'll need when creating abstractions. In fact, for most of the
models you build, the basic form of these three relationships will be all you need to convey the most
important semantics of your relationships.

SOFTWARE ENGINEERING

Dept. of CSE 54| P a g e

Structural Diagrams

The UML's structural diagrams are roughly organized around the major groups of
things you'll findwhen modeling a system.

1 Class diagram Class, interfaces and
collaborations

2 Objects diagram Objects

3 Component
diagram

4 Deployment
diagram

Components

Nodes

SOFTWARE ENGINEERING

Dept. of CSE 55| P a g e

UNIT- IV

Testing Strategies : A strategic approach to software testing ,test strategies for conventional software,

Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging.

Product metrics: Software Quality, Metrics for Analysis Model ,Metrics for Design Model, Metrics for

source code, Metrics for testing, Metrics for maintenance.

Metrics for Process and Products: Software Measurement, Metrics for software quality.

Testing Strategies

Software is tested to uncover errors introduced during design and construction. Testing often accounts for

more project effort than other s/e activity. Hence it has to be done carefully using a testing strategy.

The strategy is developed by the project manager, software engineers and testing specialists.
Testing is the process of execution of a program with the intention of finding errors Involves 40% of
total project cost

Testing Strategy provides a road map that describes the steps to be conducted as part of testing. It should
incorporate test planning, test case design, test execution and resultant data collection and execution

Validation refers to a different set of activities that ensures that the software is traceable to the customer

requirements. V&V encompasses a wide array of Software Quality Assurance.

The customer requirements.

SOFTWARE ENGINEERING

Dept. of CSE 56| P a g e

A strategic Approach for Software testing

Testing is a set of activities that can be planned in advance and conducted

systematically.

Testing strategy

Should have the following characteristics:
--usage of Formal Technical Reviews(FTR)

--Begins at component level and covers entire system
--Different techniques at different points
--conducted by developer and test group

--should include debugging
Software testing is one element of verification and validation.

Verification refers to these activities that ensure that software correctly implements a

specific function.

(Ex: A rebuilding the product right?)

Validation refers to the set of activities that ensure that the software built is traceable

to customer requirements.

(Ex:Are we building the right product?)

Testing Strategy

Testingcanbedonebysoftwaredeveloperandindependenttestinggroup.Testingand debugging are

different activities. Debugging follows testing

Low level tests verifies small code segments. High level tests validate major system

functions against customer requirements

Test Strategies for Conventional Software:

Testing Strategies for Conventional Software can be viewed as a spiral consisting off our

levels of testing:

1)Unit Testing 2)Integration

Testing 3)Validation Testing

and

4)System Testing

SOFTWARE ENGINEERING

Dept. of CSE 57| P a g e

SpiralRepresentationofTesting forConventionalSoftware

Unit Testing begins at the vortex of the spiral and concentrates one a chunk of software

in source code.

It uses testing techniques that exercise specific paths in a component and its control structure to

ensure

Complete coverage and maximum error detection .It focuses on the internal processing

logic and data structures. Test cases should uncover errors.

Fig:Unit Testing

Boundary testing also should be done as s/w usually fails at its boundaries. Unit

tests can be designed before coding begins or after

SOFTWARE ENGINEERING

Dept. of CSE 58| P a g e

source code is generated.

Integration testing: In this the focus is on design and construction of the software architecture. It

addresses the issues associated with problems of verification and program construction by testing

inputs and outputs. Though modules function independently problems may arise because of

interfacing. This technique uncovers errors associated with interfacing. We can use top-down

integration wherein modules are integrated by moving downward through the control hierarchy,

beginning with the main control module. The other strategy is bottom –up which begins

construction and testing with atomic modules which are combined into clusters as we move up

the hierarchy. A combined approach called Sandwich strategy can be used i.e., top- down for

higher level modules and bottom-up for lower level modules.

SOFTWARE ENGINEERING

Dept. of CSE 59| P a g e

Testing Tactics:

The goal of testing is to find errors and a good test is one that has a high probability of finding

an error.

A good test is not redundant and it should be neither too simple nor too complex. Two
major categories of software testing

 Black box testing: It examines some fundamental aspect of a system, tests whether each
function of

Product is fully operational.

 White box testing: It examines the internal operation sofa system and examines the procedural detail.

Black box testing

This is also called behavioral testing and focuses on the functional requirements of software. It
fully

Exercises all the functional requirements for a program and finds incorrect or missing functions,
interface

Errors, database errors etc. This is performed in the later stages in the testing process.
Treats the system as
Black box whose behavior can be determined by studying its input and related output not concerned
with the internal. The various testing methods employee adheres are:
Graph based testing method: Testing begins by creating a graph of important objects and their

relationships

And then devising a series of tests that will cover the graph so that each object and relationship

is exercised

And errors are uncovered.

Fig:O-Rgraph.

1) Equivalence partitioning : This divides the input domain of a program into classes of data

from which test cases can be derived. Define test cases that uncover classes of errors so that

no. of test cases are reduced. This is based on equivalence classes which represent a set of

valid or invalid states for input conditions. Reduces the cost of testing

Example

Input consists of1to10

Then classes are n<1,1<=n<=10,n>10
Choose one valid class with value with in the allowed range and two invalid classes where
values are greater than maximum value and smaller than minimum value.

Object

Link

SOFTWARE ENGINEERING

Dept. of CSE 60| P a g e

2) Boundary Value analysis
Select input from equivalence classes such that the input lies at the edge of the equivalence

classes. Set of data lies on the edge or boundary of a class of input data or generates the data that
lies at the boundary of a class of output data .Test cases exercise boundary values to uncover
errors at the boundaries of the input domain.

Example If0.0<=x<=1.0

Then test cases are(0.0,1.0)for valid input and(-0.1and1.1)for invalid input

3) Orthogonal array Testing

This method is applied to problems in which input domain is relatively small but too large for

exhaustive testing
Example
Three inputs A,B,C each having three values will require 27 test cases. Orthogonal testing will
reduce the number of test case to 9 as shown below

White Box testing

Also called glass box testing. It uses the control structure to derive test cases. It exercises all

independent paths ,Involves knowing the internal working of a program, Guarantees that all

independent

Paths will be exercised at least once .Exercises all logical decisions on their true and false sides,

Executes all loops, Exercises all data structures for their validity. White box testing techniques
 Basis path testing

 Control structure testing
1. Basis path testing

Proposed by Tom Mc Cabe. Defines a basic set of execution paths based on logical complexity of a

Procedural design. Guarantees to execute every statement in the program at least once
Steps of Basis Path Testing

1. Draw the flow graph from flowchart of the program
2. Calculate the cyclomatic complexity of the resultant flow graph
3. Prepare test cases that will force execution of
each path Two methods to compute Cyclomatic
complexity number

1.V(G)=E-N+2whereEisnumber of edges ,N is number of nodes
2.V(G)=Number of regions

The structured constructs used in the flow graph are:

SOFTWARE ENGINEERING

Dept. of CSE 61| P a g e

Fig:Basis path Testing

Basis path testing is simple and effective .It is not sufficient in itself

2. Control Structure testing

This broadens testing coverage and improves quality of testing. It uses the following methods:
a) Condition testing :Exercises the logical conditions contained in a program module.

Focuses on testing each condition in the program to ensure that it does not contain
errors

Simple condition

E1<relation operator>E2 Compound condition

simple condition<Boolean operator>simple

condition

Types of errors include operator errors, variable errors, arithmetic expression errors etc.
b) Dataflow Testing

This selects test paths according to the locations of definitions and use of variables in a
program Aims to
Ensure that the definitions of variables and sub sequent use is tested First
construct a definition-use graph from the control flow of a program

DEF(definition):definition of a variable on the left-hand side of an assignment
statement USE:Computationaluseofavariablelikeread,writeorvariableontherighthandof

Assignment statement

Every DU chain be tested at least once.

c) Loop Testing
This focuses on the validity of loop constructs .Four categories can be defined
1. Simple loops

2. Nested loops

3. Concatenated loops

SOFTWARE ENGINEERING

Dept. of CSE 62| P a g e

4. Unstructured loops

Testing of simple loops

N is the maximum number of allowable passes through the loop
1. Skip the loop entirely

2. Only one pass through the loop

3. Two passes through the loop

4. M passes through the loop where m>N

5.N-1,N,N+1passestheloop

Validation Testing:

Through Validation testing requirements are validated against s/w constructed.
These

are high-order tests where validation criteria must be evaluated to assure that s/w meets all

functional, behaviouralandperformancerequirements.Itsucceedswhenthesoftwarefunctions in a

manner that can be reasonably expected by the customer.

1) Validation Test Criteria

2)Configuration Review

3) Alpha And Beta Testing

The validation criteria described in SRS form the basis for this testing. Here, Alpha and Beta

testing is performed. Alpha testing is performed at the developers’ site beyond users in a

natural setting and with a controlled environment. Beta testing is conducted at end-user

sites. It is a “live” application and environment is not controlled. End-user records all problems

and reports to developer. Developer then makes modifications and releases the product.

System Testing :In system testing, s/w and other system elements are tested as a whole. This is

the last high-order testing step which falls in the context of computer system engineering.

Software is combined with other system elements like H/W, People, Database and the overall

functioning is checked by conducting a series of tests. These tests fully exercise the computer

based system. The types of tests are:

1. Recovery testing: Systems must recover from faults and resume processing within a pre

specified time.

It forces the system to fail in a variety of ways and verifies that recovery is properly performed.

Here the Mean Time To Repair (MTTR) is evaluated to see if it is within acceptable limits.

2. Security Testing: This verifies that protection mechanisms built into a system will protect it

from improper penetrations. Tester plays the role of hacker. In reality given enough resources

and time it is possible to ultimately penetrate any system. The role of system designer is to make

penetration cost more than the value of the information that will be obtained.

3. Stress testing : It executes a system in a manner that demands resources in abnormal

quantity, frequency or volume and tests the robustness of the system.

SOFTWARE ENGINEERING

Dept. of CSE 63| P a g e

4. Performance Testing: This is designed to test the run-time performance of s/w within the

context of an integrated system. They require both h/w and s/w instrumentation.

The Art of Debugging

Debugging occurs as a consequence of successful testing. It is an action that results in
the removal of errors.
It is very much an art.

Fig:Debugging process

Debugging has two outcomes:

- Cause will be found and corrected

- Cause will not be found
Characteristics of bugs:
- Symptom and cause can be in different locations

SOFTWARE ENGINEERING

Dept. of CSE 64| P a g e

- symptoms may be caused by human error or timing problems

Debugging is an innate human trait . Some are good at it and some are

not.

Debugging Strategies:

The objective of debugging is to find and correct the cause of a software error which is realized

by a

Combination of systematic evaluation , intuition and luck. Three strategies are proposed:

1) Brute Force Method.

2) Back Tracking

3) Cause Elimination

Brute Force :Most common and least efficient method for isolating the cause of a s/w error.

This is applied when all else fails. Memory dumps are taken, run-time traces are invoked and

program is loaded with output statements. Tries to find the cause from the load of information

Leads to waste of time and effort.

Backtracking : Common debugging approach. Useful for small programs.

Beginning at the system where the symptom has been uncovered, the source code is traced

backward until the site of the cause is found. More no. of lines implies no. of paths are

unmanageable.

Cause Elimination: Based on the concept of Binary partitioning. Data related to error
occurrence are organized to isolate potential causes. A “cause hypothesis” is devised and data
is used to prove or disprove it. A list of all possible causes is developed and tests are
conducted to eliminate each

Automated Debugging: This supplements the above approaches with debugging tools that

provide semi-automated support like debugging compilers, dynamic debugging aids,

test case generators, mapping tools etc.

Regression Testing: When a new module is added as part of integration testing the software

changes.

This may cause problems with the functions which worked properly before. This testing is the

re-execution of some subset of tests that are already conducted to ensure that changes have

not propagated unintended side effects. It ensures that changes do not introduce unintended

behavior or errors. This can be done manually or automated. Software Quality Conformance

to explicitly stated functional and performance requirements,

Explicitly documented development standards, and implicit characteristics that are expected of all

professionally developed software. Factors that affect software quality can be categorized in two

broad groups: Factors that can be directly measured (e.g. defects uncovered during testing) Factors

that can be measured only indirectly(e.g. usability or maintainability)

SOFTWARE ENGINEERING

Dept. of CSE 65| P a g e

McCall’s quality factors

1. Product operation Correctness

Reliability

Efficiency

Integrity

Usability
2. Product Revision

Maintainability

Flexibility

3. Product Transition

Portability

Reusability

Interoperability

1. Functionality

2. Reliability

3. Usability

4. Efficiency

5. Maintainability

6. Portability

ISO 9126 Quality Factors

Metrics for Process And Product

Software Measurement:

Software measurement can be categorized as

1) Direct Measure and

2) Indirect Measure

Metrics for Process And Product Direct

Measurement

Direct measure of software process include co-stand effort

Direct measure of product include lines of code , Execution speed, memory size

,defects per reporting time period.

SOFTWARE ENGINEERING

Dept. of CSE 66| P a g e

Indirect Measurement

Indirect measure examines the quality of software product itself(e.g.:- Functionality,
complexity, efficiency, reliability and maintainability)

Reasons for measurement

To gain base line for comparison with future assessment to determine status with
respect to plan.

To predict the size,cost and duration estimate.

To improve the product quality and process improvement.

Software Measurement

The metrics in software Measurement are Size

oriented metrics

Function oriented metrics

Object oriented metrics

Web based application metric

Size Oriented Metrics

It totally concerned with the measurement of software.

A software company maintains a simple record for calculating the size of the software. It

includes LOC, Effort,$$,PP document ,Error ,Defect ,People.

Function oriented metrics

Measures the functionality derived by the application

The most widely used function oriented metric is Function point Function

point is independent of programming language Measures functionality from

user point of view

Object oriented metric

Relevant for object oriented programming Based on

the following

 Number of scenarios (Similar to use cases)

Number of key classes

 Number of support classes

 Number of average support class per key class
Number of subsystem

Web based application metric

Metrics related to web based application measure the following

1. Number of static pages(NSP)

2. Number of dynamic pages (NDP) Customization(C) =

NSP/NSP+NDP C should approach 1

Metrics for Software Quality Measuring

Software Quality

1. Correctness=defects/KLOC

2. Maintainability=MTTC(Mean-time to change)

3. Integrity=Sigma[1-(threat(1-security))]

SOFTWARE ENGINEERING

Dept. of CSE 67| P a g e

Threat : Probability that an attack of specific type will occur with in a given time

Security : Probability that an attack of a specific type will be repelled Metrics for

Software

Quality Usability: Ease of use Defect Removal Efficiency(DRE)

DRE=E/(E+D)

E is the no. of errors found before delivery and D is no. of defects reported after

delivery Ideal value of DRE is 1

SOFTWARE ENGINEERING

Page68 DEPARTMENT OF CSE

UNIT– V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification,

risk projection, risk refinement, RMMM.

Quality Management: Quality concepts, software quality assurance, software

reviews, formal technical reviews, statistical software quality assurance, software

reliability, the ISO 9000qualitystandards.

- -----------------------------

Risk Management

Risk is an undesired event or circumstance that occur while a project is underway It is

necessary for the project manager to anticipate and identify different risks that a project may be

susceptible to Risk Management .It aims at reducing the impact of all kinds of risk that may effect

a project by identifying, analyzing and managing them

Reactive Vs Proactive risk
Reactive: It monitors the projects likely risk and resources are set aside.
Proactive: Risk are identified,their probability and impact is accessed

Software Risk

It involve 2 characteristics

Uncertainty : Risk may or may not happen

Loss: If risk is reality unwanted loss or consequences will occur

It includes

o Project Risk

o Technical Risk

o Business Risk

o Known Risk

o Unpredictable Risk

o Predictable risk

Project risk: Threaten the project plan and affect schedule and resultant cost

Technical risk: Threaten the quality and time lines of software to be produced
Business risk: Threaten the viability of software to be built
Known risk: These risks can be recovered from careful evaluation
Predictable risk: Risks are identified by past project experience

Unpredictable risk: Risks that occur and may be difficult to identify

SOFTWARE ENGINEERING

Page69 DEPARTMENT OF CSE

Risk Identification

It concerned with identification of risk

Step1: Identify all possible risks Step2:

Create item check list

Step3: Categorize into risk components-Performance risk, cost risk, support risk and

schedule risk

Step4: Divide the risk into one of 4

categories

Negligible-0

Marginal-1

Critical-2

Risk Identification

Risk Identification includes Product

size

Business impact Development environment Process

definition Customer characteristics Technology to

be built Staff size and experience

Risk Projection

Also called risk estimation .It estimates the impact of risk on the project and the product.

Estimation is done by using Risk Table. Risk projection addresses risk in 2ways

Risk

Category

Prob

abilit

y

Imp

act

RM

M

M

Size estimate
PS 60% 2

may be

significantly

low

Larger no.

of

Users than

planned

PS

30%

3

Less reuse

Than planned

PS 70% 2

End user Resist

system

BU 40% 3

Likelihood or probability that the risk is real(Li)

Consequences(Xi)

SOFTWARE ENGINEERING

Page70 DEPARTMENT OF CSE

Risk Projection
Steps in Risk projection
1. Estimate Li for each risk

2. Estimate the consequence Xi

3. Estimate the impact

4. Draw the risk table

Ignore the risk where the management concern is low i.e., risk having impact high or low

with low probability of occurrence

Consider all risks where management concern is high i.e., high impact with high or

moderate probability of occurrence or low impact with high probability of occurrence

Risk Projection

Projection

The impact of each risk is assessed by Impact values

Catastrophic-1
Critical-2

Marginal-3

Negligible-4

Risk Refinement

Also called Risk assessment

Refines the risk table in reviewing the risk impact based on the following three factors

a. Nature: Likely problems if risk occurs

b. Scope: Just how serious is it?

c. Timing: When and how long

It is based on Risk Elaboration

Calculate Risk exposure RE=P*C

Where P is probability and C is cost of project if risk
occurs Risk Mitigation Monitoring And Management
(RMMM)

Its goal is to assist project team in developing a strategy for dealing with

risk There are three issues of RMMM

1) Risk Avoidance

2) Risk Monitoring and

3) Risk Management

Risk Mitigation Monitoring And Management(RMMM)

Risk Mitigation

Proactive planning for risk avoidance

Risk Monitoring Assessing whether predicted risk occur or not

Ensuring risk a version steps are being properly applied

Collection of information for future risk analysis Determine
which risks caused which problems

Risk Mitigation Monitoring And Management(RMMM) Risk
Management

Contingency planning

Actions to be taken in the event that mitigation step have failed and the risk has

SOFTWARE ENGINEERING

Page71 DEPARTMENT OF CSE

become a live problem
Devise RMMP(Risk Mitigation Monitoring And Management Plan)

SOFTWARE ENGINEERING

Page72 DEPARTMENT OF CSE

RMMM plan

It documents all work performed as a part of risk analysis.

Each risk is documented individually by using a Risk Information Sheet.

RIS is maintained by using a database system Quality

Management

Quality Concepts

Variation control is the heart of quality control

Form one project to another ,we want to minimize the difference between the predicted

resources needed to complete a project and the actual resources used, including staff,

equipment, and calendar time

Quality of design

Refers to characteristics that designers specify for the end
product Quality Management

Quality of conformance

Degree to which design specifications are followed in manufacturing the product

Quality control

Series of inspections, reviews, and tests used to ensure conformance of a work product to its

specifications

Quality assurance

Consists of a set of auditing and reporting functions that assess the effectiveness and

completeness of quality control activities

Cost of Quality

Prevention costs

Quality planning, formal technical reviews ,test equipment ,training

Appraisal costs

In-process and inter-process inspection, equipment calibration and maintenance, testing

Failure costs

Rework ,repair ,failure mode analysis External failure costs

Complaint resolution ,product return and replacement ,help line support, warranty work

Software Quality Assurance

Software quality assurance (SQA) is the concern of every software engineer to reduce cost
and improve product time-to-market.

A Software Quality Assurance Plan is not merely another name for a test plan, though test

plans are

Included in an SQA plan.

SQA activities are performed on every software project.

Use of metrics is an important part of developing a strategy to improve the quality

of both software processes and work products.

Software Quality Assurance

Definition of Software Quality serves to emphasize:
Conformance to software requirements is the foundation from which software quality
is measured.

SOFTWARE ENGINEERING

Page73 DEPARTMENT OF CSE

Specified standards are used to define the development criteria that are used to guide the

manner in which software is engineered.

Software must conform to implicit requirements(ease of use, maintainability

,reliability, etc.) as well as its explicit requirements.

SQA Activities

Prepare SQA plan for the project.

Participate in the development of the project's software process description.
Review software engineering activities to verify compliance with the defined

software process.

Audit designated software work products to verify compliance with those defined as part

of the software process.

Ensure that any deviations in software or work products are documented and handled

according to a documented procedure.

Record any evidence of noncompliance and reports them to management.

Software Reviews

Purpose is to find errors before they are passed onto an other software engineering

activity or released to the customer.

Software engineers(and others)conduct formal technical reviews(FTRs)for

software quality assurance.
Using formal technical reviews(walk through or inspections) is an effective means
for improving software quality.

Formal Technical Review

AFTR is a software quality control activity performed by software engineers and others. The

objectives are:

To uncover errors in function, logic or implementation for any representation of the

software.

To verify that the software under review meets its requirements.
To ensure that the software has been represented according to predefined
standards. To achieve software that is developed in a uniform manner and To make
projects more manageable.

Review meeting in FTR

The Review meeting in a FTR should abide to the following constraints

Review meeting members should be between three and five.

Every person should prepare for the meeting and should not require more than two hours of

work for each person.

The duration of the review meeting should be less than two hours.
The focus of FTR is on a work product that is requirement specification ,a detailed

component design, a source code listing for a component.

The individual who has developed the work product i.e, the producer informs the project

leader that the work product is complete and that a review is required.

The project leader contacts a review leader, who evaluates the product for readiness,

generates copy of product material and distributes them to two or three review members for

advance preparation .

SOFTWARE ENGINEERING

Page74 DEPARTMENT OF CSE

Each reviewer is expected to spend between one and two hours reviewing the product,

making notes

There view leader also reviews the product and establish an agenda for the review meeting

The review meeting is attended by review leader, all reviewers and the producer.
One of the reviewer act as a recorder, who notes down all important points

discussed in the meeting.

The meeting(FTR) is started by introducing the agenda of meeting and then the

producer introduces his product. Then the producer “walkthrough” the product, the reviewers

raise issues which they have prepared in advance.

If errors are found there coder notes down

Review reporting and Record keeping

During the FTR, are viewer(recorder)records all issues that have been raised A

review summary report answers three questions

What was reviewed? Who

reviewed it?

What were the findings and conclusions?

Review summary report is a single page form with possible attachments

There view issues list serves two purposes To identify problem areas in the
product.

To serve as an action item check list that guides the producer as corrections are made.

Review Guidelines

Review the product ,not the producer Set an

agenda and maintain it
Limit debate and rebuttal

Enunciate problem areas, but don’t attempt to solve every problem

noted
Take return notes

Limit the number of participants and insist upon advance

preparation. Develop a checklist for each product i.e likely to be

reviewed.

Allocate resources and schedule time for FTRS

Conduct meaningful training for all reviewer Review

your early reviews
Software Defects

Industry studies suggest that design activities introduce 50-65% of all defects or

errors during the software process

Review techniques have been shown to be up to 75% effective in

uncovering design flaws which ultimately reduces the cost of

subsequent activities in the software process

Statistical Software Quality Assurance

Information about software defects is collected and
categorized. Each defect is traced back to its cause

Using the Pareto principle(80%ofthedefectscanbetracedto 20%ofthecauses) isolate the

"vital few" defect causes.

SOFTWARE ENGINEERING

Page75 DEPARTMENT OF CSE

Move to correct the problems that caused the defects in the "vital few”

Six Sigma for Software Engineering

The most widely used strategy for statistical quality

assurance

Three core steps:

1. Define customer requirements, deliverables, and project goals via well-

defined methods of customer communication.

2. Measure each existing process and its output to determine current quality

performance (e.g., compute defect metrics)

3. Analyzed effect metrics and determine vital few causes.

For an existing process that needs improvement

1. Improve process by eliminating the root causes for defects

2. Control future work to ensure that future work does not reintroduce
causes of defects

If new processes are being developed

1. Design each new process to avoid root causes of defects and to

meet customer requirements

2. Verify that the process model will avoid defects and meet

customer requirements

Software Reliability

Defined as the probability of failure free operation of a computer

program in a specified environment for a specified time period Can be

measured directly and estimated using

historical and developmental data

Software reliability problems can usually be traced back

to errors in design or implementation.

Measures of Reliability
Mean time between failure(MTBF)=MTTF+MTTR
MTTF = mean time to failure

MTTR=mean time to repair

Availability= [MTTF/(MTTF+ MTTR)]x 100%

ISO 9000 Quality Standards

ISO (International Standards Organization) is a group or consortium of 63 countries

established to plan and fosters standardization. ISO declared its 9000 series of standards in

1987. It serves as a reference for the contract between independent parties. The ISO 9000

standard determines the guidelines for maintaining a quality system. The ISO standard mainly

addresses operational methods and organizational methods such as responsibilities,

reporting, etc. ISO 9000 defines a set of guidelines for the production process and is not

directly concerned about the product itself.

Types of ISO 9000 Quality Standards

The ISO 9000 series of standards is based on the assumption that if a proper stage is

followed for production ,then good quality products are bound to follow automatically .The

types of industries to which the various ISO standards apply are as follows.

SOFTWARE ENGINEERING

Page76 DEPARTMENT OF CSE

1. ISO9001:This standard applies to the organizations engaged indesign,development,

production, and servicing of goods. This is the standard that applies to most software

development organizations.

2. ISO 9002: This standard applies to those organizations which do not design products

but are only involved in the production. Examples of these category industries contain

steel and car manufacturing industries that buy the product and plants designs from

external sources and are engaged in only manufacturing

thoseproducts.Therefore,ISO9002doesnot apply to software development organizations.

3. ISO9003: This standard applies to organizations that are involved only in the

installation and testing of the products. For example, Gas companies.

An organization determines to obtain ISO9000 certification appliesto ISO registrar office for

registration. The process consists of the following stages:

1. Application: Once an organization decided to go for ISO certification, it

applies to the registrar for registration.

2. Pre-Assessment: During this stage ,the registrar makes a rough assessment of the
organization.

3. Document review and Adequacy of Audit: During this stage ,the registrar

reviews the document submitted by the organization and suggest an improvement.

4. Compliance Audit: During this stage ,the registrar checks whether the

organization has compiled the suggestion made by it during the review or not.

5. Registration: The Registrar awards the ISO certification after the

successful completion of all the phases.

SOFTWARE ENGINEERING

Page77 DEPARTMENT OF CSE

6. Continued Inspection:The registrar continued to monitor the organization time bytime.

	(Autonomous Institution – UGC, Govt. of India) Sponsored by CMR Educational Society
	COURSE OBJECTIVES:
	UNIT-I
	TEXTBOOKS:
	COURSE OUTCOMES:

	INTRODUCTION:
	The Evolving role of software
	Characteristics of software

	THECHANGINGNATUREOFSOFTWARE
	LEGACYSOFTWARE
	SOFTWAREMYTHS
	MANAGEMENTMYTHS
	CUSTOMERMYTHS
	SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY
	SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY (1)
	APROCESSFRAMEWORK
	A PROCESS FRAME WORK
	APROCESSFRAMEWORK (1)
	CAPABILITY MATURITY MODEL INTEGRATION (CMMI)
	Continuous model:

	CMMI
	CMMI (1)
	CMMI-Staged model

	THE WATERFALL MODEL
	PROBLEMS IN WATER FALL MODEL
	THE SPIRAL MODEL
	THE SPIRAL MODEL (1)
	A FINAL COMMENT ON EVOLUTIONARY PROCESS
	Agility and Agile Process model
	Phases of Agile model:
	Disadvantages:
	Other process models of Agile Development and Tools
	Software Requirements:

	SOFTWARE REQUIREMENTS
	SOFTWARE REQUIREMENTS (1)
	• System Functional Requirements

	FUNCTIONALREQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS
	1. Product Requirements
	2. Organizational Requirements
	3. External Requirements

	PROBLEMSFACEDUSINGTHENATURALLANGUAGE
	STRUCTURED LANGUAGE SPECIFICATION
	SYSTEM REQUIREMENTS STANDARD FORM
	Interface Specification
	Three types of interfaces
	The Software Requirements document
	IEEE requirements standard

	REQUIREMENTS ENGINEERING PROCESS
	SPIRAL REPRESENTATION OF REQUIREMENTS ENGINEERING PROCESS
	REQUIREMENTSVALIDATION
	 PROTO TYPING
	Requirements management planning

	DESIGN PROCESS AND DESIGNQUALITY
	• Functionality
	• Usability
	• Reliability
	• Supportability

	PATTERNS
	MODULARITY
	INFORMATION HIDING
	FUNCTIONALINDEPENDENCE
	REFINEMENT & REFACTORING
	THE DESIGN MODEL
	DATA DESIGN ATARCHITECTURE LEVEL
	DATA DESIGN AT COMPONENT LEVEL
	Data-flow architectures
	Call and return architectures
	Object-oriented architectures
	Layered architectures

	ARCHITECTURAL PATTERNS
	A Conceptual Model of the UML
	Figure Nodes
	Behavioral Things
	These two elements• interactions and state machines• are the basic behavioral things that you may include
	Grouping Things
	Annotational Things
	Relationships in the UML
	Class
	Terms and Concepts
	Names
	Attributes
	Operations
	Operations (1)
	Relationships
	Dependency
	Figure Dependencies
	Association
	Name
	Role
	Aggregation
	Other Features
	Structural Diagrams
	Testing Strategies
	A strategic Approach for Software testing
	Testing Strategy
	Test Strategies for Conventional Software:
	SpiralRepresentationofTesting forConventionalSoftware
	Testing Tactics:
	Black box testing
	2) Boundary Value analysis
	3) Orthogonal array Testing
	White Box testing
	Validation Testing:
	The Art of Debugging
	McCall’s quality factors
	Metrics for Process And Product Direct Measurement
	Indirect Measurement
	Software Measurement
	Size Oriented Metrics
	Function oriented metrics
	Object oriented metric
	Web based application metric
	Risk Management
	Reactive Vs Proactive risk
	Software Risk
	Risk Identification
	Risk Projection
	Risk Refinement
	Risk Mitigation Monitoring And Management(RMMM)
	RMMM plan
	Quality Concepts
	Cost of Quality
	Software Quality Assurance
	Software Quality Assurance (1)
	SQA Activities
	Software Reviews
	Formal Technical Review
	Review meeting in FTR
	Review reporting and Record keeping
	Review Guidelines
	Statistical Software Quality Assurance
	Six Sigma for Software Engineering
	Three core steps:
	Software Reliability
	ISO 9000 Quality Standards
	Types of ISO 9000 Quality Standards

